
Vortex-Investigating Terra Integrated Model

VITIM 3.1.1

user guide

K.V. Ushakov, V.V. Kalmykov, R.A. Ibrayev, and M.N. Kaurkin.

October 16, 2018

Contents

1 Introduction 2
1.1 Some features of this release . 2

2 User workplace preparation 2
2.1 Installing the operating system and compiler . 2
2.2 SSH configuring . 2
2.3 Installing geophysical software . 3
2.4 Downloading the model and the geophysical data . 4

3 How to choose the model configuration and start working 5
3.1 Compiling and running under CMF2.0 . 5
3.2 Compiling and running under CMF3.0 . 6

4 Basic options 7
4.1 Launching on various numbers of tasks . 7
4.2 Selecting atmospheric and runoff forcing . 7
4.3 INMIO built-in ice model . 7
4.4 Working on reduced ice grid (available under CMF2.0 only) 7
4.5 Working in offline analysis mode (available under CMF2.0 only) 8

5 Compact Modelling Framework CMF3.0 8
5.1 Getting started with the CMF3.0 . 8
5.2 Model components . 10
5.3 Events in the system . 15
5.4 Services . 19
5.5 Working with NetCDF-files . 23
5.6 GA-communicator . 26
5.7 Additional tools for the model . 29

6 Short instructions 31
6.1 Configuration switch . 31
6.2 Deep reconfiguring of the forcing under CMF2.0 . 31

7 Elements of numerical and program implementation 32
7.1 Notes on the differences between CMF2.0 and CMF3.0 . 32

A Appendix: basic namelist parameters 32

1

B Appendix: standard configurations 32

1 Introduction

This manual is a pilot version of the instruction for the user of the coupled geoscientific model VITIM. By
studying it, you can sequentially go through all levels of the deployment of the model and immersion in the
work, from installing the operating system to working with the internal content of the component modules
and the coupler. At the end of initial levels, simple tests are provided in order to make sure, in the first
approximation, that everything functions properly. All paths to folders and files in this manual will be listed
from the folder vitim3.1, or files and folders will be given without paths.

1.1 Some features of this release

— Supported configurations: global20, WOM025_ice, WOM05_ice, arctic0125a, arctic025t, laptev0125(a,c)
и WOM01.

— Supported work in the CMF2.0 and CMF3.0 frameworks.

— Sea ice models supported: Schrum and CICE.

— The CICE ice model may be launched on the reduced grid (relatively to the ocean one) for processor
resources saving (only under CMF2.0).

— SCRIP interpolations can take into account the input and output land-sea masks.

— Diagnostic utilities o_diagn include: time averaging and flux calculations for meridional heat transport
studies.

2 User workplace preparation

2.1 Installing the operating system and compiler

The subtleties of the operating system installation are beyond the scope of this guide, completely lying on
your shoulders and communication channels with the Internet reference resources. The current version of
VITIM installed on PC works with the Ubuntu 14.04 operating system. With newer releases of Ubuntu,
there were difficulties, which, however, are likely to be overcome by a couple of lines in .bashrc. Therefore,
the desire to deal with them on your part is warmly welcome. The model is configured for the Intel Fortran
compiler. To work with CMF3.0, you will need version 15 or higher.

2.2 SSH configuring

SSH is a network protocol that allows you to work remotely with a certain system, for example, with a
cluster. To connect to a remote machine, for example, we type:

ssh ivanov@mvs10p.jscc.ru

How can the system understand that you are really ivanov? You will either be asked to enter the
password (issued to you by the administrator of the machine), or the system will ask for your private key.
It is believed that the method with the key is safer. What is its essence? You generate a pair of keys with
ssh-keygen command: public and private. The public one must be sent to the administrator of the machine,
and the private one you keep in a safe place. When connecting, you show the private key. If the pair has
matched, you enter the cluster. When connecting, an error of the following kind may appear: WARNING:
UNPROTECTED PRIVATE KEY FILE! This means that ssh has detected that your data in the ∼/.ssh
folder has too open access rights and can be read directly without any hacking. Therefore, you have to set
the right permissions on the folder and its contents (read about access rights)

2

chmod 700 ~/.ssh && chmod 600 ~/.ssh/*

How can we simplify the work with ssh? For each host, we create an entry in the configuration file.
Whenever possible, ssh will access the information in this config file, minimizing the number of user-entered
parameters. For example, if you need to present a private key to log in, then you add the following lines to
the file ∼/.ssh/config:

Host inmio

HostName ivm-nat.nc.mstn.ru

Port 40222

User ivanov

IdentityFile ~/.ssh/ivanov_inmio_key

This is what you need to do in order to gain access to the GROSM server, which stores the model
codes, installation scripts, atmospheric forcing data, etc. Generate a key pair and ask the administrator
(sherema@yandex.ru) to register the public key.

Let’s check:

angarsk@angarsk:~$ ssh inmio

Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-21-generic x86_64)

* Documentation: https://help.ubuntu.com/

739 packages can be updated.

384 updates are security updates.

Last login: Fri Mar 2 15:26:27 2018 from 91.225.112.

2.3 Installing geophysical software

The model uses a number of libraries for I/O, interprocessor communications, data processing, etc. For
convenience, a script is provided, which downloads them, installs and sets environment variables. Download
the latest version of the script and ancillary files from the remote repository on the GrOSM server:

git clone ssh://inmio/git/scripts.git

To configure the installation script, it is sufficient to set several main parameters (for example, the
necessary versions of the compilers: mpif90 or mpiifort, etc.) in the script entries. At this stage, you must
have the necessary compilers installed. On a PC, it is the Intel Complier, and on the cluster – loaded
modules, usually specified for convenience in the .bashrc file. Now you can run the installation script. In
this example, the software will be installed into the folder $HOME/House/software

bash install_soft.sh --install-dir $HOME/software --all \

--mpifc [Fortran compiler] --mpicc [C compiler] --mpicxx [C++ compiler]

Usually, for Intel compilers, the following parameters are suitable:[︀
Fortran compiler

]︀
= mpiifort[︀

C compiler
]︀
= mpiicc[︀

C++ compiler
]︀
= mpiicpc

By default, the script will try to download data from remote servers. If there is no Internet connection,
manually transfer the library archives to the cluster and try again. Where to get the archives? Run on an
Internet-connected system the script with parameters --all --only-download. The required archives will
appear in the target installation folder. At the end of the installation, tests are automatically performed.
Make sure they are completed without errors:

3

Testing NetCDF...SUCCESS

+ mpiifort -c -cpp test_ga.f90 -I/home/angarsk/House/software/include

+ mpiifort -o test_ga.exe test_ga.o -L/home/angarsk/House/software/lib

+ mpiexec.hydra -np 4 ./test_ga.exe

Testing GlobalArrays...GA_INIT

Testing GlobalArrays...MA_INIT

Testing GlobalArrays...NGA_CREATE_IRREG

Testing GlobalArrays...NGA_DISTR

Testing GlobalArrays...GA_PUT

Testing GlobalArrays...GA_SPD_INVERT 0

Testing GlobalArrays...NGA_GATHER

SUCCESS

+ rm -f simple_xy_par.nc test_ga.exe test_netcdf.exe ’*.mod’ test_ga.o tes

+ set +x

================

ALL TESTS PASSED

================

As a result, the software and auxiliary scripts are installed in the $HOME/House/software folder.
Close the console and reopen it, so that the necessary paths are registered on your system. Now, typing, for
example, which cdo, you’ll find that the path leads to your software folder. Let’s check:

angarsk@angarsk:~$ which cdo

/home/angarsk/House/software/bin/cdo

angarsk@angarsk:~$ which h5dump

/home/angarsk/House/software/bin/h5dump

angarsk@angarsk:~$ which ncdump

/home/angarsk/House/software/bin/ncdump

angarsk@angarsk:~$ locate job_launcher.sh

/home/angarsk/House/software/bin/job_launcher.sh

/home/angarsk/Plots/scripts/launchers/job_launcher.sh

2.4 Downloading the model and the geophysical data

The user workstation is the folder vitim3.1, in which all models and data are stored. To get it, download
the workpiece from the repository:

git clone inmio:/git/vitim3.1

Download the latest versions of models from the repositories to the folder comps:

cd vitim3.1/comps/ocn

git clone inmio:/git/inmio4.1.git

cd ../ice

git clone -b vitim2.1 inmio:/git/cice-5.1.git

For the minimum run, the topography ETOPO, the Levitus data WOA2009 and the CNYFv2 forcing
should be in the vitim3.1/data_external folder. If this data already exists on your computer (cluster),
then put in the data_external symbolic links to its locations. If not, run the download scripts (unpacking
the forcing will take a few minutes):

cd ../../data_external

bash get_IC_databases.sh

bash get_forcing_databases.sh

cd ../coupling

4

In the future, when working with more advanced model configurations, make sure that the data_external
folder has the necessary forcing or links to it.

3 How to choose the model configuration and start working

The model comes with a set of several standard configurations with different computational domains, reso-
lution, forcing and enabled parameterizations. When you first get acquainted, you just need to choose one
of them. Pay attention, however, to the resolution: grids with a size greater than 200 × 100 usually do not
fit into the RAM on the PC.

In the file coupling/config, specify the full path to the vitim3.1 folder and select the configuration of
the numerical experiment (uncomment the corresponding line). For example, the Laptev Sea with a grid
size of 40 × 60:

export VITIM_PATH=~/VITIM3.1/vitim3.1

...

export RES="laptev0125c"; export GRID="40x60"; export INMIOCOUPLED="yes"

Now create symbolic links among model files for this configuration.

bash links_inmio set

Your further steps depend on the version of the Compact Modeling Framework (CMF).

3.1 Compiling and running under CMF2.0

Compile the stand-alone ocean model (i.e. coupled model with non-interactive atmosphere and land runoff
components):

cd coupling

./makeclean_all

A complete set of compilation commands will be executed with preliminary removal of the object files. In
the future, you can call ./make_all – the system will recompile only changed files (see, however, the note
in the section 4.1). Make sure to see the message "Coupled model for component set <ocn atm_ncar

lnd_core ice_cice> compiled successfully."

Now create the files of initial conditions and interpolation weights. Warning: when this command is
executed, all nc-files in the folders (symlinks) coupling/data and coupling/off/data will be deleted.

cd configure

./generate_laptev0125c

In this example, the script for generating grids for the laptev0125c configuration is called. For other
configurations, scripts are named in a similar way and stored in their instances of the configure folder
(links to which, as you already know, are activated when you call bash links_inmio set). If there occurs
a library error, try to call make clean in the off/SCRIP/source folder. Check that there are now 5 files
with weights, the initial conditions, and an active link to forcing in the coupling/data folder:

angarsk@angarsk:~/VITIM3.1/vitim3.1/coupling/data$ ls -1

ATM_NCAR_192x94_to_ICE_CICE_40x60.nc

ATM_NCAR_192x94_to_OCN_40x60.nc

CNYFv2

ICE_CICE_40x60_to_OCN_40x60.nc

LND_CORE_360x180_to_OCN_40x60.nc

OCN_40x60_to_ICE_CICE_40x60.nc

OCN_40x60x49_IC.nc

5

Create symbolic links for CICE ice model. Warning: if this step is forgotten, the model may start without
visible troubles, but produce incorrect results!

bash links_cice set

After this step, there must not be any broken symbolic links in the coupling folder. The model launch
is performed from the folder coupling. This is an example of the launch command:

mpirun -np 7 ./model.exe CPL 1 OCN 2 ATM 1 LND 1 ICE 2 abc 0 0 3

Here abc is the name of the numerical experiment (arbitrary 3 symbols), 0 0 3 – experiment duration (model
years, months and days).

3.2 Compiling and running under CMF3.0

Compile CICE and the coupled ocean-ice model with non-interactive atmosphere and runoff components:

cd coupling/comp_ice_cice/cice

./comp_ice

cd ../..

bash make ocn atm_ncar lnd_core ice_cice --clean

Make sure that the message appeared: "Executable <.//cpl.exe> was created successfully."

Now create the files of initial conditions and interpolation weights. Warning: when this command is
executed, all nc-files in the folders (symlinks) coupling/data и coupling/off/data will be deleted.

cd off

bash generate_ocean_all.sh 40 60 49 abc

In this example, 40 and 60 are the horizontal grid sizes (should be the same as in the configuration you
selected in the coupling/config file), 49 - the number of vertical levels (so far only this option is available),
abc – the name of your experiment (any combination of 3 numbers or letters). If there occurs a library error,
try to call make clean in the off/SCRIP/source folder. Check that there are now 5 files with weights,
initial conditions, and also an active link to the forcing in coupling/data:

angarsk@angarsk:~/VITIM3.1/vitim3.1/coupling/data$ ls -1

ATM_NCAR_192x94_to_ICE_CICE_40x60.nc

ATM_NCAR_192x94_to_OCN_40x60.nc

CNYFv2

ICE_CICE_40x60_to_OCN_40x60.nc

LND_CORE_360x180_to_OCN_40x60.nc

OCN_40x60_to_ICE_CICE_40x60.nc

OCN_abc_IC.nc

Create symbolic links for CICE ice model. Warning: if this step is forgotten, the model may start without
visible troubles, but produce incorrect results!

bash links_cice set

After this step, there must not be any broken symbolic links in the coupling folder. Into the folder
coupling/configure it is necessary to put a namelist file for the given name of the experiment (in our
example it is exp_abc.in). Its contents are easily readable, examples are given in the coupling/configure
folders for all basic configurations.

The launch is performed from the coupling folder. Here is an example of the launch command:

bash job_launcher.sh --machine ubu --np 9 --exe ./cpl.exe

--args "DTR 1 CPL 1 IOD 1 OCN 2 ATM 1 LND 1 ICE 2 abc"

6

4 Basic options

4.1 Launching on various numbers of tasks

In the example above, you can specify other cores (tasks) numbers for OCN, ATM, LND, ICE components.
The utility coupling/comp_cpl/bin/test_decomp.exe, which is created when the system is compiled
under CMF2.0, will tell you the valid number of cores and the corresponding subdomain sizes. For CICE
operation, it is necessary that the number of cores and subdomain sizes of one core of the ice model be
specified in the file coupling/comp_ice_cice/cice/comp_ice for the selected configuration, and the
number of cores also specified in the
coupling/comp_ice_cice/cice/input_templates/name_of_configuration/ice_in.

After every such reconfiguring (affecting CICE), you need to rebuild completely the CICE and the coupled
model. In the command line parameter np at launch, do not forget to specify the total number of cores for
the coupled model. If you do not need to run one of the components, its name and the number of cores in the
launch command are not listed. In particular, if you do not specify ICE, the ocean built-in thermodynamic
ice model of C. Schrum will work.

4.2 Selecting atmospheric and runoff forcing

In the 2.4 section, we have downloaded the atmospheric and river data of CNYFv2 – the normal CORE-I
year. The standard model configuration can also work with IAFv2 – “real” synoptic data of the CORE-II
protocol, based on reanalysis and observations for 1948-2009
(http://data1.gfdl.noaa.gov/nomads/forms/core/COREv2/CIAF_v2.html). They occupy about 30 GB and,
usually, are available on clusters used by the GrOSM. To select the database that your atm_ncar and
lnd_core models will read, specify the parameters of the named lists atm_forcing_type and
lnd_rivers_type in the files coupling/configure/atm_list.in and coupling/configure/lnd_list.in,
respectively. The description of the main parameters of the named lists of the model is given in the appendix
A.

4.3 INMIO built-in ice model

If you do not specify the ICE and its number of cores in the launch command, the ocean built-in thermody-
namic ice model by C. Shrum will work. In this case, to save memory when generating grids (especially for
the WOM01 configuration), you can disable the generation of CICE grids: switch ice_grid to .false. in
comps/ocn/inmio4.1/driver_cmf2.0/off_ocn_module.f90 (in the CMF2.0 environment) or
comps/ocn/inmio4.1/driver_cmf3.0/cmf_ocn_off_adapter.f90 (in the CMF3.0 environment). If
you work with CICE, make sure that ice_grid = .true.

4.4 Working on reduced ice grid (available under CMF2.0 only)

Several standard configurations, for saving resources, by default work on the reduced ice grid of CICE, which
covers only the northern polar cap. In the rest of the calculation domain, in this case, the built-in ice model
by C. Schrum works. When you turn on a standard reduced-grid configuration

— Check the flag cice_and_schrum in
comps/ocn/inmio4.1/driver_cmf2.0/o_par_module.f90. For a reduced grid it must be .true.,
for a regular grid .false.

— Check the value of additional_ny at the top of the
coupling/comp_ice_cice/off_ice_cice_module.f90 file. For a regular grid it must be 0, for a
reduced one – see recommended values in comments.

— To work on a reduced CICE grid, it is necessary that the decomposition of the ocean with respect to
the j axis consists of at least two bands (in order for one to hold the ice of CICE and the other to work
with Schrum model). Check this with the test_decomp.exe utility.

7

If you want to enable grid reduction for a particular configuration (for example, take a global regular
model and use it to explore the Arctic), then do the following. It is recommended that you change these
settings carefully only if you understand what is happening. To enable reduction:

— In the file off_ice_cice_module.f90 specify additional_ny – a negative integer, meaning how
many rows must be removed from the southern side of the grid

— Specify the new j-size of the grid in config and in ice_list.in, new block sizes in comp_ice.

— Add commands for changing CICE sizes in the names of three interpolation files at the end of the grid
generation script(see examples in the global20 and WOM025_ice configurations)

To turn reduction off, take everything back: set additional_ny=0, the ice grid size equal to the ocean one,
interpolation files are not renamed.

4.5 Working in offline analysis mode (available under CMF2.0 only)

If you run the model in offline analysis mode, then the value of the key in the file coupling/analysis_flag
should be equal to .false. If in the normal calculation mode, then .true.

5 Compact Modelling Framework CMF3.0

The Compact Modelling Framework performs two main tasks:

— Support of service operations for a particular model (for example, working with the file system). The
CMF allows you to clearly separate the code of physical model (for example, the ocean) and the code
responsible for the technology (for example, the procedure for saving data). This separation, firstly,
simplifies the architecture (each module deals with its own business), and, secondly, gives the possibility
for the developer of service modules to modify their insides without interfering with the physical model.

— Support for coupling of models (for example, creating an ocean-atmosphere model). Historically,
models are separate programs that calculate their own physics (ocean model models the ocean). How
to join two independent models so that they work together? One approach is to connect them using
an adapter (similar to an electrical adapter) to a modelling framework. As a result, within itself
each model continues to consider its physics, and through the adapter it communicates with the other
participants of the coupled model.

5.1 Getting started with the CMF3.0

To understand how the system works and what is needed to run it, it’s better to use specific examples.
Example 1 shows a sequence of actions that allows you to run a simple CMF test from scratch. The following
examples explain how you can complicate this workflow to take full advantage of the CMF capabilities. The
last example shows how to connect your model to the system.

Example 1: running an empty atmosphere-ocean coupled model

In this example, we show how to run from scratch a simple CMF3.0 test, simulating the launch of two models
(ocean and atmosphere) that do nothing. Go to the model folder and run:

cd test_suit

bash tester.sh --t empty_comps --clean --test

What happens in this test? A special script is launched, which allows to combine the model build and
its launch (this script is made for convenience, now it is not necessary to deep into how it works). The script
goes into the folder empty_comps, containing a test (but from the point of view of the system quite full)
version of the coupled ocean-atmosphere model. In the folder there is a simple script describing the test
(test_description.sh), which looks like this:

8

COMPS_BUILD="ocn_test atm_ncar"

RUN_COMMAND[1]="-np 5 ./cpl.exe DTR 1 IOD 1 CPL 1 OCN 1 ATM 1 tst"

That is, the script tester.sh sees that it has to build a coupled model from the ocn_test and atm_ncar
folders and run it on 5 cores, giving services (not yet think about this), ocean and atmosphere 1 core to
each. In the console, you will see that the system has output the experiment parameters and entered the
computational cycle phase, which in this test consists only of receiving STOP signals (normal termination)
from the models. Result: You just started the hello-world example of a coupled model. The model did
nothing, but only sent a signal about the normal completion. In the following examples we will add work
for it.

Example 2: teaching the model to save diagnostics

In the previous example, the model was simply connected to the CMF using an adapter, ran off the assigned
time of the experiment and ended. Where are these actions described? The logic of any model is described
with the help of a special adapter class, which, as befits an adapter, knows how to connect to the system
and at the same time has inputs for the physical model. To understand the further process, it is helpful to
read the first sections of the manual about the model component.

Now you roughly understand the logic of the system and it’s time to look at the code of the previous
example. Open the file /empty_comps/comp_ocn_test/cmf_ocn_test_cpl_adapter.f90. You
see the implementation of the very interfaces that are described in the manual. In this example, they are
empty (hence the name of the test). The only non-empty method calls ini_reg_comp to register the model
in the system. It is thanks to this registration that the system knows how many steps requested to run this
empty model and what are sizes of its arrays.

Now, let’s teach the model to write the diagnostics and for this we will slightly complicate the code. To
do this, create a new test (already created for you) and call it /save_dg. The logic of the new model is not
much more complicated and is described in the file
/empty_comps/comp_ocn_test/cmf_ocn_test_cpl_adapter.f90. In addition to registering the
model, we added 2 arrays (2D and 3D), code that allocates memory for them, and added registration of
events over these arrays. Here appears the second important property of CMF, namely the ability to say
“I want this array to be written every 2 hours to a file”. To understand what this is about, be sure to
read the beginning of the section on system events. Now you can go on to what the example does. In the
implementation of the interface ini_reg_data for a 2D array we see:

call this % register_array(arr_name = "test_dg_2D", indexing = "ij",

arr = save_dg_2D(iwest:ieast, jsouth:jnorth))

call this % register_periodic_event(arr_name = "test_dg_2D", act = "SAVE_DG", dh = 1)

The first line registers the array save_dg_2D under the name “test_dg_2D” in the system (in fact, the
system remembers its address and indexing). The second line registers a periodic event over this array,
saying that every 1 hour you need to create a diagnostic save event (namely, take the array at the address,
send it to the appropriate service for saving to the diagnostic file). You can run this test, but first look at
the file test_description.sh:

COMPS_BUILD="ocn_test"

RUN_COMMAND[1]="-np 4 ./cpl.exe DTR 1 OCN 1 IOD 1 CPL 1 tst"

....

We ask to build only the ocean model and run it on 1 core (the remaining cores are service ones). Below,
the file describes the conditions checking results (namely, that for different numbers of cores we get the same
diagnostic file). Now you do not have to think about it. Running:

cd test_suit

bash tester.sh --t save_dg --clean --test

9

The script will run 5 different tests, comparing the results with the first one, and will report the results.
The result: we figured out how the system understands where is the model and how to work with it, learned
how to generate events and launched the first adequate model that flushes data to disk.

Example *: connecting your model

Until now, we have run built-in tests. Now you can create your own model (as the main model at the root
of the system, or while in the same form of a test). To do this:

Create a backbone of the derived class
To create a new model, a script is provided (it is available if you installed the software correctly):

bash generate_comp.sh ocn_test

The script creates the model folder, all subfolders needed, two derived class templates (for the component
and the off-block) and makefile building it all. You can immediately execute make – an ocean model library
will be compiled that does nothing and consists of two files. Actually, all the models from the previous
examples began with the call of this script.

Fill in the derived class
Fill in every class method according to your model requirements.

Connect a component to the system
The compilation system is constructed in such a way that if you add your model (for example, the

ocean), then at compilation it is sufficient to specify the name of the folder, which has an agreed form.
During compiling, the build script takes the name of your version of the component and understands that
the first three letters denote the component of the Earth system (ocn, atm, ice, lnd), and then your
version (ncar, test, inmio). The script will go into the desired folder (for example, comp_ocn_test),
build the library there, and tell the main program that the compilation will involve the ocean model, and its
version (for example, test). All these conventions are automatically applied if you call generate_comp.sh.
The main script of the compilation system make takes the names of the folders (models). Actually, it is
called by the script tester.sh, which used in examples above. For example, if we created a new ocean model
ocn_test at the root of the system, we can build and run in this way:

bash make ocn_test

mpirun -np 4 ./exe OCN 1 CPL 1 DTR 1 IOD 1 exp

When calling the ocean procedures, will be used exactly the version of the ocean that was transferred to
the compiling script (namely, ocn_test).

5.2 Model components

General idea

How can CMF learn about your model (for example, the ocean) and, accordingly, help it to perform service
activities and communicate with other models?

One approach is to define a special adapter class, or in other words, a generic model (component). Such
a component is a model skeleton and defines only its interface, but not implementation. The system will be
able to call the adapter class methods (because it knows the interface), which are very general actions, for
example, performing the entire initialization or one full physics step. At the same time, the system does not
know what exactly will be done inside these methods – it leaves their implementation at the discretion of
the model (for example, the calculation of thermodynamics and dynamics in the main step).

In practice, the described process becomes an inheritance of the class Component and implementation
of abstract interfaces. Each model defines them at its own discretion. Plus, the user can call convenient
methods defined for him in the Component class (for example, registering an event). As a result, to work in
the system it is enough to create one adapter class that calls the specific methods of the model (your physical
procedures) and the auxiliary methods of the system (defined for convenience in the class Component). The
logic of the class will determine the logic of the work of your model in the CMF.

10

Component class interface

Below are some of the interfaces of the Component class:

! Abstract methods that must be implemented in the model

! Abstract method for registering the model in the system

! must call register_model()

procedure(I_ini_reg_comp), DEFERRED :: ini_reg_comp

! The abstract method for executing all allocate()’s in the model,

! since further it will be necessary to transfer addresses

procedure(I_ini_allocate), DEFERRED :: ini_allocate

! Abstract method for registering all data and mapping events in the system

! must call register_array(), register_event()

procedure(I_ini_reg_data), DEFERRED :: ini_reg_data

! Abstract method for all user-defined initializations

procedure(I_ini_main), DEFERRED :: ini_main

! Abstract method for one physical model step

procedure(I_make_step), DEFERRED :: make_step

! Abstract method for all finalizing actions

procedure(I_finalize), DEFERRED :: finalize

! Auxiliary methods of the base class that can be called from the model

! Registers a model in the system

procedure, public :: register_model

! Registers an array in the system

generic, public :: register_array => ...

! Creates a generator for time-uniform events

procedure, public :: register_periodic_event

! Creates a generator to bind to the time axis of a netCDF file

procedure, public :: register_synced_event

! Generates a single event

procedure, public :: raise_event

More on auxiliary methods

procedure, public :: register_model

Description: Registers a model in the system

Arguments:

*_size - model array sizes

decomp_type - decomposition type ("1D" or "2D")

timestep_sec - time step, seconds

11

generic, public :: register_array

Description: Registers an array in the system, saving its parameters

(address, attributes) under tag <arr_name>

Arguments:

arr_name - array name (string name, not Fortran name)

indexing - indexing ("ijk" or "kij")

arr - the Fortran array itself (its address)

generic, public :: register_periodic_event

Description: Creates a generator for time-uniform events

Arguments:

arr_name - string name of a registered array

act - the action to be done at the moment of the event,

e.g, ‘‘SAVE_DG’’

src - (optional) data source (file, other component),

e.g., ‘‘/data/ocn_test_data.nc’’

dst - (optional) data receiver

info - (optional) any other information

dh, dm, ds - (optional) event period (hours, or minutes, or seconds. If all

equal to 0, the the event will occur only once in the beginning

of the run (e.g., ‘‘READ_CP’’).

procedure, public :: register_synced_event

Description: Creates a generator for event that is bind to the

time axis of a netCDF-file

Arguments:

arr_name - string name of a registered array

src - (optional) file data source,

e.g., ‘‘/data/ncar_temp.nc’’

start_date - (optional) from which date to start binding.

By default, from the start of experiment.

procedure, public :: raise_event

Description: Raises a user-defined event.

Arguments:

arr_name - string name of a registered array

src - (optional) data source (file, other component),

e.g., ‘‘/data/ocn_test_data.nc’’

dst - (optional) data receiver

dt_rec - (optional) date record (if we want to take file data related to

a specific date)

For system developers

How the time cycle of the model looks

After all initializations, the component enters the main time cycle model_cycle:

12

subroutine model_cycle(this)

! Parameters skipped for brevity

! Sending all arrays for registration to services

call this % ev_scheduler_ % get_all_events(new_events)

do i = 1, new_events % length()

ev = new_events % get(i)

call this % send_request(ev)

call this % try_register_comp_ga(ev)

end do

call this % raise_event(act = "STOP")

call CompSplitter % barrier()

do while (.TRUE.)

! Ask Scheduler to collect all events of the current step

call this % ev_scheduler_ % gather_events(this % model_time(), new_events)

! Process events on the side of the model

do i = 1, new_events % length()

call this % handle_event(new_events % get(i))

end do

! While timer @model_clock_@ ticks, we are working in the cycle

if (this % model_clock_ % is_stopped()) EXIT

! Calling physical model timestep

call this % make_step()

! Clock ticks

call this % model_clock_ % tick()

end do

! At the end of the cycle, we notify the services

! that the model has completed its work normally

call this % raise_event(act = "STOP")

end subroutine

How the model reacts to events

As described in the Events section, after an event is generated, it is first processed by the model. To do
this, the Component class defines the method handle_event() (short code):

subroutine handle_event(this, ev)

...

! Different types of events lead to different reaction

select case (ev % action())

! Sending events: wait until the ga-array is freed, put the data there,

! synchronize and mark the array as full,

! send request to the corresponding service

case("SAVE_CP", "SAVE_DG", "SEND_MP")

13

do while (TRIM(this % comm_ % get_info(ev % ga_name(), &

COMM_GA_STATUS)) /= "free"); end do

call this % put_to_ga(ev)

call this % comm_ % sync(CompSplitter % i_am_id())

if (CompSplitter % is_first_rank()) &

call this % comm_ % put_info(ev % ga_name(), COMM_GA_STATUS, "full")

call this % send_request(ev)

! Receiving events: send the request to the service, wait until the ga-array

! is full, get data from it, synchronize and mark the array as free

case("READ_FD")

call this % send_request(ev)

do while (TRIM(this % comm_ % get_info(ev % ga_name(), &

COMM_GA_STATUS)) /= "full"); end do

call this % get_from_ga(ev)

call this % comm_ % sync(CompSplitter % i_am_id())

if(CompSplitter % is_first_rank()) &

call this % comm_ % put_info(ev % ga_name(), COMM_GA_STATUS, "free")

! Receiving of mapping: there is no request, we simply wait until the ga-array is full,

! get data from it, synchronize and mark the array as free

case("RECV_MP")

! This is push-event, so no request:

! just register, wait, get, mark as free

do while (TRIM(this % comm_ % get_info(ev % ga_name(), &

COMM_GA_STATUS)) == "free")

! call Debugger % log_msg("Current GA status is: &

! "//TRIM(this % comm_ % get_info(ev % ga_name(),&

! COMM_GA_STATUS)))

end do

call this % get_from_ga(ev)

call this % comm_ % sync(CompSplitter % i_am_id())

if(CompSplitter % is_first_rank()) &

call this % comm_ % put_info(ev % ga_name(), COMM_GA_STATUS, "free")

! Just send request and exit

case("STOP")

call this % send_request(ev)

! Send the request and wait for the service to finish,

! because we can not continue working

case("ERROR")

call this % send_request(ev)

call CompSplitter % barrier()

case default

call this % fatal_error("raise event: &

uknown action: <"//TRIM(ev % action())//">")

end select

end subroutine

14

How to change the reaction of the model to events

Warning: In this paragraph, changes are made to the system code. If you are not sure about your actions,
contact the developer. To change the response or add a new behavior, simply expand the handle_event()
method.

Warning: mind the synchronization issues! The model should be blocked if the ga-array (which is the
exchange buffer) is still occupied (for the “put data” event) and, conversely, is free (for the “get data” event).
For this, the status of the information array is checked. If you do not set a lock, there is no guarantee that
the model will receive or send complete data. After the model has put or get the data, it must change the
status of the ga-array accordingly.

Note: adding a new component of the Earth system

Warning: In this paragraph, changes are made to the system code. If you are not sure about your actions,
contact the developer. In the file ComponentSplitter add the required component name:

character(3), parameter :: COMPONENT_NAMES(9) = &

(/ "DTR", "CPL", "IOD", "OCN", "ATM", "ICE", "LND", "SEA", "TST"/)

Notes for the system developer

If in the future there will be an opportunity to get rid of explicit synchronization through an array of
information, it will be good. Now this approach is chosen, since we can not “lose data”. That is, even if
some component (ocean model) is faster than another component (atmosphere model or IOD, which slowly
writes data to a file), we do not have the right to lose the array. The accumulation of arrays in the form of
a queue will also lead to nothing, since models usually work at a constant speed and as a result, the queue
will simply exhaust all available memory. Therefore now, if the “fast” model is ready to put data, but the
ga-buffer is still occupied, it is blocked.

5.3 Events in the system

General idea

Events are messages about the need to perform certain actions on an array of data. For example, when we
want to send model data for saving to a diagnostic file, we generate (raise) an event with the type SAVE_DG
and some parameters (for example, a destination file). Events are produced on the side of the model: by an
unpredictable call of the raise_event() from the user (for example, when a critical drop in the level in the
ocean occurs), or by a generator (but, in fact, by the same raise_event(). Note: both the model and the
services have their own reaction to events (see the sections about the Model Component and Services).

The first to respond to the event is the model. It looks at its type and determines what to do (e.g.,in
case of SAVE_DG – put data into the ga-array, send a request to the service and continue running). Then
the event is packed into an MPI message and flies away as a request to the services (if the model decided to
send the event). Services unpack the event, look at its name, and either process it or ignore.

Event types

Now the following types of events are defined (the reaction to them is presented for understanding and is
not set in the events themselves, but in their handlers in the classes Component and Service):

∙ READ_FD – reading from a file (its special cases are READ_IC, READ_CP).
Component: send a request to the service, wait for the data, get the data, continue working.
IOD service: receive a request, take the data from the file, put it into ga-array.

∙ SEND_MP – sending data to mapping and then to another component
Component: put data into ga, continue working.
CPL service: take the data from ga, interpolate it to the recipient’s grid, put into the recipient’s ga.

∙ RECV_MP – receiving mapped data from another component
Component: wait until the data appears in ga, get it, continue working.
CPL service: do nothing (everything is already done at the SEND_MP step)

15

∙ SAVE_CP – control point saving
Component: put data into ga, send a request to the service
IOD service: receive a request, get data from ga, write to a file.

∙ SAVE_DG – Saving diagnostics (in fact, the same as SAVE_CP, but separated for performance reasons)

∙ STOP – normal finish of the model work.
Component: send a request, continue working
Services: When the last model sends the STOP message, services stop normally.

∙ ERROR – emergency shutdown of the model.
Component: send a request, stand on hold, because we can not continue working.
Services: A service that receives this message must shutdown.

Generators

In general, since the Component class defines the method raise_event(), theoretically, event generators are
not needed, because at any time in the cycle, you can send a request to the service and it will somehow
react. But in practice, this approach means that the user must monitor the time himself and send requests
at the right moments. To simplify the life of the user, several event generators are defined in the system,
that is, objects that, depending on the model time, issue a request or do nothing.

An example of a generator can be given by the generator of periodic events, e.g., saving diagnosis every
2 days. Such a generator creates an event in 0 hours, 48 hours, 96 hours, ... of model time and does not
create anything in the remaining time intervals (for example, at 11 hours 12 minutes of model time)

How to register an event?

To register an event it is enough to transfer it to the generator. For this, the user calls the method of the
class Component, which itself passes it to the right destination (see interface of the Component).

For system developers

The VarEvent.f90 file defines the abstract class VarEvent, which represents the interface of any generator:

! Abstract method that updates the internal state of the generator

! and does (or does not) return an event

procedure(I_update_ve), DEFERRED :: update

! Abstarct destructor

procedure(I_destroy_ve), DEFERRED :: destroy

Specific implementations of generators inherit the base class and determine what the object will do when
calling update(). For example, the VarEventNormal class simply checks the proportionality of the current
time to the period, which is specified when the generator is initialized.

Next, the EventScheduler class creates an array of polymorphic references to all such generators and,
whenever the timer proceeds, it queries all the generators if they are ready to issue a request.

How to define a new event type

If you want to add a new event, you must:

— In the class Actions, add a new event type, its priority, and the corresponding service that will handle
it.

— In the class Event, add a condition to create your event type. These conditions allow to verify that
the event is complete (for example, the mapping event must have a destination, otherwise it can not
be processed).

16

— If you need additional fields that are not in the Event class, add them, making sure that you have
implemented their packing to and unpacking from an MPI message.

Now a new type of event is defined in the system. Events with this type can be built and sent. At
the same time, in order for the message to actually produce some kind of impact on the system, we need
to add event processing to the services and component (see the corresponding sections on services and the
component).

How to make a generator

To create your generator, you must inherit the base class VarEvent and implement the two abstract methods
of the base class. In addition, since a pointer is passed to store all the generators, you must provide the
pointer to the generator object, for which it’s convenient to make a modular function (analogous to new in
C++). For example, the VarEventNormal class is used to generate periodic events:

module var_event_normal_module

use var_event_module

type, extends(VarEvent) :: VarEventNormal

private

integer :: period_sec_ = 0

type(DateTime) :: start_date_

contains

procedure :: update

procedure :: destroy

end type

CONTAINS

! Analog of ’new’: create a dynamic object and return a reference to it.

! And at the same time we perform the usual functions of the constructor -

! initialize the generator with the start date, event and generation period.

function new_VarEventNormal(ev, start_date, dd, dh, dm, ds) result (obj)

type(Event), intent(in) :: ev

type(DateTime), intent(in) :: start_date

integer, intent(in) :: dd, dh, dm, ds

class(VarEventNormal), pointer :: obj

allocate(VarEventNormal::obj)

obj % ev_ = ev

obj % start_date_ = start_date

obj % period_sec_ = dd*60*60*24 + dh*60*60 + dm*60 + ds

end function

! The main function of generation. Depending on the current time

! <cur_time> it generates event <ev>

! and returns .true. or .false.

! In fact, it simply checks the proportionality of the period of generation to the

! difference of current and start time.

logical function update(this, cur_time, ev)

class(VarEventNormal) :: this

type(DateTime), intent(in) :: cur_time

type(Event), intent(inout) :: ev

17

integer(8) :: sec_from_start

sec_from_start = date2sec(cur_time) - date2sec(this % start_date_)

update = sec_from_start >= 0 .AND. MOD(sec_from_start, this % period_sec_) == 0

if (update) then

ev = this % ev_

end if

end function

! The object does not contain internal dynamic data, so the destructor is empty.

subroutine destroy(this)

class(VarEventNormal) :: this

end subroutine

end module

Now another type of generator is defined in the system, but the system does not know about it yet. To
connect the generator to the system and make life easier for the user, you need to add a simple wrapper to
create a new generator in the class Component:

subroutine register_periodic_event(this, arr_name, act, src, dst, dd, dh, dm, ds)

class(Component) :: this

character(*), optional, intent(in) :: src, dst

character(*), intent(in) :: arr_name, act

integer, intent(in), optional :: dd, dh, dm, ds

type(Event) :: ev

type(ArrayInfo) :: arr_info

arr_info = this % get_array_info(arr_name)

ev = Event(arr_info = arr_info, act = act, owner = CompSplitter % i_am(), &

src = src, dst = dst, file_prefix = this % prefix())

call this % ev_scheduler_ % add(&

new_VarEventNormal(ev, ExpInfo % start_date(), &

MERGE(dd,0,PRESENT(dd)), MERGE(dh,0,PRESENT(dh)), &

MERGE(dm,0,PRESENT(dm)), MERGE(ds,0,PRESENT(ds))))

end subroutine

In the end, the user writes something like:

call this % register_periodic_event(arr_name = "test_dg_2D", act = "SAVE_DG", dh = 1)

and the wrapper register_periodic_event() constructs the event object, defines some default vari-
ables, creates the generator object in the dynamic memory, and gives a pointer to it in the object EventScheduler.

Notes for the system developer

Now for the type of event, you need to know the service that will handle it. This information is not used
anywhere, except for the moment when a ga-array is registered in the component, since it must clearly know
who to synchronize with. If the issue of explicit synchronization when creating an array in CommunicatorGA

% init_array () is resolved, this dependency can be removed altogether.
Perhaps it makes sense to make an analog of JSON for Fortran (FSON).

18

5.4 Services

General idea

The Compact Modelling Framework in some form implements a service-oriented architecture (SOA). The
idea is that on the side of the client (model) events are generated and corresponding requests (control flow)
are sent, to which correspond to the data stored in the Global arrays (data flow). On the server side, some
services parse requests from the single queue and perform work (analogous to the pipeline).

Now, the following services are defined:

∙ DTR (distributor) – subscribed to all events, just sends them to all other services. It is necessary for
maintaining a single queue in the parallel environment (analogue of the master).

∙ IOD (I/O device) – subscribed to events READ_FD, SAVE_CP, SAVE_DG. When it receives a message, it un-
packs it, understands what is required of it (for example, take data from GA named “test_ga_ocn” and
write to file “OCN_180x90_tst_DG”) and performs the necessary actions. The other types of messages
are simply ignored.

∙ CPL (coupler) – subscribed to event SEND_MP. This event determines where to get the data, what to do
with it, and where to put it (that is, it’s a push event, since events RECV_MP are not required to process
it).

How it works

To simplify the creation of a new service, a basic abstract class Service is implemented, which has the
following interface:

! Base class constructor

procedure, public :: init_base

! Base class destructor

procedure, public :: destroy_base

! Main cycle of events processing

procedure, public :: request_cycle

! Virtual method for processing one event

procedure(I_handle_request), private, DEFERRED :: handle_request

! Virtual constructor

procedure(I_init_service), public, DEFERRED :: init

! Virtual destructor

procedure(I_destroy_service), public, DEFERRED :: destroy

The main programm cpl_main.f90 contains the following lines:

select case(CompSplitter % i_am())

case("DTR")

allocate(ServiceDTR :: service_p)

case("CPL")

allocate(ServiceCPL :: service_p)

case("IOD")

allocate(ServiceIOD :: service_p)

end select

! Start model cycle

19

if (CompSplitter % is_model()) then

call comp_p % model_cycle()

else

call service_p % init_base(comm)

call service_p % init()

call service_p % request_cycle()

end if

That is, every process that belongs to the group of processes of a certain service (defined in CompSplitter),
allocates its polymorphic pointer and then calls the constructor and enters the event processing cycle
request_cycle(). (At the end of the program, service destructors are called in the same way)

The base class method request_cycle() contains two identical loops, one for registering arrays, and the
second for real event processing. The structure of the loop is simple: for the time being there are working
models, accept the request, call the virtual method handle_request(ev) and track the STOP signals from
the models.

do while (this % running_count_ > 0)

! Receive any request

call this % receive_request(ev)

call this % handle_request(ev)

select case(ev % action())

! One component finish work

case("STOP")

this % running_count_ = this % running_count_ - 1

CYCLE

end select

end do

How to make a new service

∙ Create a skeleton of the derived class

As a result, to create a service, you need to inherit the class Service and define three virtual methods:
init, destroy, handle_request.

module service_tst_module

use utils_module

use actions_module

use service_module

use event_module

use communicator_ga_module

use component_splitter_module

implicit none

type, extends(Service) :: ServiceTST

private

contains

!=======================

! ===== PUBLIC API =====

procedure, public :: init => init_tst

20

procedure, public :: destroy => destroy_tst

procedure, public :: handle_request => handle_tst

procedure, private :: handle_my_method1

procedure, private :: handle_my_method2

! ===== PUBLIC API =====

!=======================

end type

CONTAINS

subroutine init_tst(this)

class(ServiceTST) :: this

! Your constructor

end subroutine

subroutine destroy_tst(this)

class(ServiceTST) :: this

! Your destructor

end subroutine

subroutine handle_tst(this, ev)

class(ServiceTST) :: this

! Code of event handler ev (read further)

end subroutine

! Rest methods

end module

∙ Fill in the class

We fill the init_tst, destroy_tst methods with the necessary actions. Next, fill in the main method –
handle_tst. Under the current agreement, when the service “sees” the array for the first time, the method
must register this communication channel (that is, the ga-array) in the communicator. For this you can use
the following construction:

if (.NOT. this % comm_ % is_registered(ev % ga_name())) then

call this % try_register_service_ga(ev)

...

! Other actions required for the first time when you receive a message of this type

! (i.e. by this ga-channel)

end if

If the array is already registered, you can immediately deal with its processing. As an example, the
handle_request method of the class ServceIOD is shown below. It handles only events related to working
with files and the error message ERROR (which simply leads to an abnormal termination). Other events are
ignored. During the first reception, the array is registered, during the rest it is processing the event and
outputting information to stdout with the built-in auxiliary method of the base class report_handle(). The
methods handle_put(), handle_get() contain the real logic of extracting an array from ga and writing it
to a file using FileHandler_NC.

subroutine handle_iod(this, ev)

class(ServiceIOD) :: this

type(Event), intent(in) :: ev

21

select case (ev % action())

case("SAVE_CP", "SAVE_DG")

if (.NOT. this % comm_ % is_registered(ev % ga_name())) then

call this % try_register_service_ga(ev)

else

call this % handle_put(ev)

call this % report_handle(ev)

end if

case("READ_FD")

if (.NOT. this % comm_ % is_registered(ev % ga_name())) then

call this % try_register_service_ga(ev)

else

call this % handle_get(ev)

call this % report_handle(ev)

end if

case("ERROR")

call this % report_handle(ev)

call exit(1)

end select

end subroutine

Warning: mind the synchronization issues! The service should be blocked if the ga-array (which is the
exchange buffer) is still occupied (for the “put data” event) and, conversely, is free (for the “get data” event).
For this, the status of the information array is checked. If you do not set the lock, there is no guarantee that
the resulting data will be complete. After the service has put or get the data, it must change the status of
the ga-array accordingly.

For example, when ServiceIOD receives the request SAVE_DG, it knows (see the corresponding handler in
Component) that the data is already completely in the ga-array, so no additional checks are needed. When
the service is ready to release the ga-array (in the method handle_put()) after the data has been copied
into its memory, it synchronizes and marks the array as free:

call this % comm_ % sync(service_id)

if(CompSplitter % is_first_rank()) call this % comm_ % put_info(ev % ga_name(),&

COMM_GA_STATUS, "free")

∙ Register the service in the system

Warning: In this paragraph, changes are made to the system code. If you are not sure about your actions,
contact the developer.
At the moment the system does not know anything about the new service (call it TST), so you need to:

1) In the file ComponentSplitter add the necessary service names to the arrays of components and
services:

character(3), parameter :: COMPONENT_NAMES(9) = &

(/ "DTR", "CPL", "IOD", "OCN", "ATM", "ICE", "LND", "SEA", "TST"/)

character(3), parameter :: SERVICE_COMPS(4) = &

(/ "DTR", "CPL", "IOD", "TST"/)

The class performs division into groups of processes in the multiprocessor environment, and now every
process can find out if it belongs to the group, for example, of the CPL.

2) Connect the service module in the cpl_main and define the creation of a real service object using the
previous item:

22

select case(CompSplitter % i_am())

...

case("TST")

allocate(ServiceTST :: service_p)

...

end select

Now, if you specify TST 2 at startup, the system will start the new service on 2 processes.

∙ Send right requests from the client

Now the service is fully operational – it starts and accepts requests from the client (for the time being
it’s just notification about the end of the run STOP). In order for the client to generate the right events, it is
necessary to define a new event, to make a generator for it, and to describe the actions necessary from the
client. How to do this is described in the Model Component section.

Notes for the system developer

If in the future there will be an opportunity to get rid of explicit synchronization through an array of
information, it will be good. Now this approach is chosen, since we can not “lose data”. That is, even if
some component (ocean model) is faster than another component (atmosphere model or IOD, which slowly
writes data to a file), we do not have the right to lose the array. The accumulation of arrays in the form of
a queue will also lead to nothing, since models usually work at a constant speed and as a result, the queue
will simply exhaust all available memory. Therefore now, if the “fast” model is ready to put data, but the
ga-buffer is still occupied, it is blocked.

5.5 Working with NetCDF-files

General idea

NetCDF is a hardware-independent self-describing format and a set of libraries for working with it. NetCDF
is the actual standard for storing geophysical data. As a result, to save, for example, an array of speeds, you
do not need to invent your procedures with a heap of read/writes, but just call the ready function of the
NetCDF library. An important property of the procedures is that they can be performed in both sequential
and parallel modes.

NetCDF has a rather high-level interface in terms of operations on files, but rather low-level from the
user’s point of view, since it is necessary to understand the intricacies of certain built-in procedures. In this
case, the control over the correctness of all operations lies entirely with the user. Since it is often necessary to
work with NetCDF files, there is a desire to create a helper class that will have a high-level interface, hiding
all the complexities of NetCDF within itself. So the class FileHandler_NC appeared. Firstly, it simplifies the
work with NetCDF, and secondly, it adds some functionality. For example, the class provides a convenient
way to access data not only by index, but also by timestamp and an ability to read the time axis of files
in different formats. To work with the class, it’s enough to link in the module file_handler_nc_module,
create an instance of the class, and use it to manage the file.

FileHandler_NC is used in:

— Service_IOD for parallel put/get-operations

— Component for analysis of a file with time axis

— Offline to create initial condition files

— Service_CPL to read interpolation weight files

— in data assimilation system, etc.

As a result, all operations with NetCDF of the whole system are delegated to the helper class, which
greatly simplifies the code by encapsulating all the logic in one place.

23

Work example

Different ways of working with the class can be found in the test Coupler/test/test_filehandler_nc.f90.
For example, the standard scheme of work is: create a handler, use it to create a file and variables, write
data.

use file_handler_nc_module

type(FileHandler_NC) :: handler

call handler % create_file("test_2D_dt.nc", mpi_comm = tm % comm())

call handler % create_dim("i", il)

call handler % create_dim("j", jl)

call handler % create_dim("k", kl)

call handler % create_time_dim()

call handler % create_var("test_2D_dt", "real4", "i", "j", dimt_name = "TIME")

call handler % put(arr_2D, lo = decomp % lower_bound_2D(), &

hi = decomp % upper_bound_2D(), dt = DateTime(1988, 03, 15, 0, 0, 0))

call handler % close_file()

Description of API

Create/open/close file

create_file(filename, mpi_comm)

Description: Create file or rewrite previous

Parameters:

filename - string name of file to create

mpi_comm - <optional> MPI mpi_comm if it is parallel run

open_file(filename, mpi_comm, status)

Description: Try to open file

Parameters:

filename - string name of file to open

mpi_comm - <optional> MPI mpi_comm if it is parallel run

status - <optional> status of operation: 0 if ok, 1 is error

open_or_create_file(filename, mpi_comm)

Description: Try open and then create file

Parameters: Combination of parameters for open_file and create_file procedures

close_file()

Description: Close current file

Parameters:

Create dimensions

create_dim(name, length)

24

Description: add NC-dimension to file

Parameters:

name - name of dimension

length - corresponding length of dimension

create_time_dim()

Description: add time NC-dimension to file

Parameters:

Create/open variables on dimensions

create_var(var_name, var_type, dim1_name, dim2_name, dim3_name, dimt_name)

Description: Try to create var. Error if this var is already exist.

Parameters:

var_name - string name of file to create

var_type - type of variable

dim*_name - create variable of these dimensions

open_var(var_name, status)

Description: Try to open variable

Parameters:

var_name - string name of variable to open

status - <optional> status of operation: 0 if ok, 1 is error

open_or_create_var(this, varname, var_type, dim1_name, dim2_name,

dim3_name, dimt_name)

Description: try open and then create variable

Parameters: combination of parameters for open_var and create_var procedures

Write/read variables

put/get (arr, lo, hi, dt)

Description: put and get data.

Parameters:

arr - data array of supported type and dimension

(int4, int8, real4, real8, 1D, 2D, 3D)

lo, hi - lower and upper bounds of dimensions (e.g. (/1, 1/), (/ il, jl /))

dt - <optional> DateTime corresponding to field. Necessary for time vars.

Various operations

put_att/get_att(att_name, att_val, is_global)

Description: put/get attribute to variable or whole file

Parameters:

att_name - name of attribute

att_val - value of attribute of supported type (int, character)

is_global - <optional> if .TRUE., this attribute is made NF90_GLOBAL

25

function get_dim_size(dim_name)

Description: Return size of interested dimension

Parameters:

dim_name - dimension name

get_time_axis(time_axis)

Description: Get time axis

Parameters:

time_axis - integer(8), allocatable :: time_axis(:) - where to put time axis

in seconds from DateTime % epoch_start()

logical is_time_var()

Description: Check if current variable has a time axis

Parameters:

5.6 GA-communicator

The general idea is to allow the user to easily access different parts of a distributed array. This is done using
the abstraction of PGAS (Partitioned Global Adress Space). PGAS suggests that there is some virtual huge
array that is accessible from any process that participated in its creation. Of course, in fact, there is no
global array, and its parts are stored in processes’ memory, but the user does not know about it – all the
subtleties are taken over by the library, which is why simplicity is achieved. For example, a client at process
12 can ask for an item with indexes [124, 97], as if it has direct access to it. Behind the scenes, PGAS will
know which process the item belongs to (for example, the 18th), execute the MPI request for it, get the
result and return it to the client.

An implementation of PGAS abstraction is the Global Arrays (GA) library (which, by the way, is also
installed by the geophysical software installation script). There are also other implementations. Finally, the
Communicator_GA class is a class of the CMF system, representing a kind of facade for this library, that is,
it defines an even higher-level interface and hides some of the subtleties of the GA.

Interface

subroutine init(max_index, proc_local_count)

Description: construct communicator object for <num_of_sides> components

Parameters:

max_index - maximum index of component, which will be used for work

with object (normally equal to number of defined comps)

proc_local_count - size of local communicator, required for agile memory

allocation

subroutine init_group(src_id, src_ranks, dst_id, dst_ranks)

Description: register processor group between two sides

Parameters:

src_id, dst_id - ids of sides

src_ranks, dst_ranks - ranks of all processes of sides

subroutine init_array(arr_name, datatype, dimnum, holder_id, holder_decomp, &

subscriber_id)

26

Description: initialize array based on Decomposition object, it can be

accessed from <holder_id> and <subscriber_id> components,

but stored on <holder_id>. If array with such name already

exists - delete previous and create new.

Parameters:

arr_name - string name of array

datatype - supported datatype string: "real4", real8", "int4"

dimnum - supported dimension string: "2D", "3D"

holder_id - id of source component who hold array in memory

holder_decomp - decomposition of holder side

subscriber_id - id of subscriber component

subroutine init_array(arr_name, datatype, dim1_len, dim2_len, dim3_len, holder_id, &

holder_size, subscriber_id)

Description: initialize array based on dimension sizes, it can be

accessed from <holder_id> and <subscriber_id> components,

but stored on <holder_id>. If array with such name already

exists - delete previous and create new.

Parameters:

arr_name - string name of array

datatype - supported datatype string: "real4", real8", "int4"

dimnum - supported dimension string: "2D", "3D"

dim*_len, - size of each dimension

holder_id - id of source component who hold array in memory

holder_size - how many processors owns the GA

subscriber_id - id of subscriber component

subroutine destroy_array(arr_name)

Description: destroy global array (you should set appropriate group before this

call - the same as on init_array)

Parameters:

arr_name - string name of array

subroutine sync(src_id, dst_id)

Description: barrier for src_id, dst_id

Parameters:

src_id, dst_id - indexes of groups

integer function id(arr_name)

Description: return ga_id of array with given name.

Return -1 if no such array.

Parameters:

arr_name - string name of array

subroutine put (arr_name, lo, hi, arr)

subroutine get (arr_name, lo, hi, arr)

Description: put/get data

Parameters:

arr_name - string name of array

27

lo, hi - arrays representing area (in global indexing) you

want to put/get

arr - your buffer for data

Examples of usage

In more detail, examples of use can be found in tests for the class
(coupler/test/ga_communicator). Below are the popular examples taken just from there.

Creating an array shared by two components

The class allows to create an array that will be distributed on one component, but still visible to another
component. This allows, for example, to create a temperature array that will be physically distributed over
the ocean’s cores (and they can put and get data from it), but, in addition, the service of the coupler can
also work with this array, although it does not store any part of it.

! Ask the CompSplitter for component identificators

ocn_id = CompSplitter % comp_id("OCN")

cpl_id = CompSplitter % comp_id("CPL")

! Initialize the communicator object with the number of components and the local

! communicator size of each component

call comm_ga % init(CompSplitter % comp_defined(), CompSplitter % comm_local_size())

! Ask the CompSplitter for process lists of each components

call CompSplitter % proc_list("OCN", list = proc_list_ocn)

call CompSplitter % proc_list("CPL", list = proc_list_cpl)

! With their help, register the group [ocn_id, cpl_id]

call comm_ga % init_group(ocn_id, proc_list_ocn, cpl_id, proc_list_cpl)

! The ocean creates its decomposition and distributes it to all -

! it is necessary that all interested core groups call registration

! of the array with the same parameters.

! In a real program, you can take decomposition data from the global

! ModelInfo array that stores information about all components

if (CompSplitter % i_am() == "OCN") then

ocn_decomp = Decomposition(il, jl, kl, "2D", CompSplitter % comm_local_size(), &

CompSplitter % rank_local())

end if

call ocn_decomp % broadcast(CompSplitter % proc_first("OCN"), &

CompSplitter % comm_world())

! Finally, we register the array, indicating the ocean as the holder,

! passing its decomposition (so that the GA allocates the array exactly so),

! and the subscriber is the coupler

call comm_ga % init_array(arr_name = "glob_2D", datatype = "real4", dimnum = "2D", &

holder_id = ocn_id, holder_decomp = ocn_decomp, subscriber_id = cpl_id)

! Now you can put data into the array: for example, let only the ocean do it,

! so that each core puts a global array (nonsense in a real program)

if (CompSplitter % i_am() == "CPL") call comm_ga % put("glob_2D", (/ 1, 1 /), &

(/ il, jl /), tgd % glob(:,:,1,1))

28

! We necessarily perform synchronization, that is, we wait till all the

! data has been put, since the put/get calls are nonblocking

call comm_ga % sync(ocn_id, cpl_id)

! Now we can take the data: all the cores of both components take local pieces

! and compare them with the predefined test

call comm_ga % get("glob_2D", (/ w, s /), (/ e, n /), tgd % loc_2D)

call tm % assert(tgd % is_correct(arr_type = "2D"), "all get 2D local patch &

defined in parameters")

Creating an array that is shared by only one component

Sometimes you need to create an array for use only within one component. In this example, we will
create such an array for the ocean component. In addition, instead of passing the ocean decomposition to
the procedure, we simply give the dimensions so that the class itself decomposes the array for us. Most steps
repeat the previous example, except that the group and the array are now created for the same identifiers
(the holder and the subscriber are the same), and the version of the procedure for registering the array
without indicating the decomposition is called.

! Ask the CompSplitter for component identificator

ocn_id = CompSplitter % comp_id("OCN")

! Initialize the communicator object with the number of components and the local

! communicator size of each component

call comm_ga % init(CompSplitter % comp_defined(), CompSplitter % comm_local_size())

! Ask the CompSplitter for process list of the component

call CompSplitter % proc_list("OCN", list = proc_list_ocn)

! Register the group for ocean only

call comm_ga % init_group(ocn_id, proc_list_ocn)

! We register the array without specifying a subscriber -- this will be the

! component itself. In addition, we only transfer the dimensions of the array il,jl

call comm_ga % init_array(arr_name = "priv_2D", datatype = "real4", dim1_len = il, &

dim2_len = jl, holder_id = ocn_id, &

holder_size = CompSplitter % comm_local_size("OCN"))

! Put data (again global)

call comm_ga % put("priv_2D", (/ 1, 1 /), (/ il, jl /), tgd % glob(:,:,1,1))

! Synchronize to make sure that everyone put the data

call comm_ga % sync(ocn_id)

! Get the local data

call comm_ga % get("priv_2D", (/ w, s /), (/ e, n /), tgd % loc_2D)

5.7 Additional tools for the model

The tools listed in this section are not the logical part of the CMF, but represent some external tools that
the client code can use. For example, although halo exchanges or reduce-operations are not necessary for
all models, CMF contains them as separate “convenient” functions that work on the communicator of the
calling model and are not visible to the rest of the system.

29

Halo updater

General idea

In many models, there is a need to exchange the border cells of the local calculation domain of each process
with the neighboring processes. This task is solved by the class HaloUpdater. Formally, it is not a part of
the CMF, but is a separate module that any model can use. Now the exchange functions are implemented
for latitude-longitude and bipolar grids (both for T- and V-cells), for 2D-, 3D-arrays of any kind used in the
ocean model. Structurally, the module consists of a template class HaloUpdaterBase (without specifying
the types), which does the basic work, and the HaloUpdater class, which presents the high-level interface to
the client and calls specific methods of the low-level class.

From the user’s point of view, when you connect the halo_updater_module, the HaloUpdateMaster

object becomes available, which is used for exchanges.

Example of usage

Details of operation of the updater can be found in the test (coupler/test/halo_update). Below is a
typical example of use. Note the optional parameter
change_size_on_bipolar: if it is equal to the .true., the sign will be changed. In the opposite case (or if it
is not specified), the sign will be saved. In addition, for convenience, all procedures have the same form for
all types of arrays (this is called function overloading).

use halo_updater_module

! Create a decomposition object

ocn_decomp = Decomposition(180, 90, 20, "2D", comm_local_size, rank_local, &

is_icycle = .true., is_bsc = .true.)

! Initialize the master, specifying the model decomposition and

! the maximum halo width

call HaloUpdateMaster % init(decomp = ocn_decomp, max_halo_width = 2)

! Ready to exchange: in this case we exchange a three-dimensional array

! of temperatures with halo width 1

call HaloUpdateMaster % update(t_c(:,:,:,1), update_width = 1, grid_type = ’T’)

! And now a two-dimensional array u_c(1,:,:) with halo width 2

call HaloUpdateMaster % update(u_c(1,:,:), update_width = 2, grid_type = ’V’, &

change_sign_on_bipolar = .TRUE.)

Other utilities

UtilsAllReduce

Returns the global sum of a variable on the communicator or, in the presence of weights, a weighted sum.
Warning: Be careful with global operations – they can lead to performance degradation.

use utils_module

real(kind=8) :: my_global_sum, my_global_int

! Calculate the sum over the ocean communicator for the variable some_local_val

my_global_sum = UtilsAllReduce(local_val = some_local_val, comm = ocn_comm)

! Calculate the area-weighted sum over the ocean communicator for the variable

! some_local_int

my_global_int = UtilsAllReduce(local_area = some_area, local_val = some_local_int, &

30

comm = ocn_comm)

PointSaver

Saves a data point along with the corresponding timestamp.

use point_saver_module

type(PointSaver) :: ps

real(8) :: some_val

! Initialize the object with the name of the file (and the same name as the variable

! inside it) and the period of data flush to disk.

call ps % init(varname = "var1", flush_period = 100)

! Put the data to the file together with the current time

! (in this case it is requested from the component via the method model_time())

call ps % put(some_val, cmp_ptr % model_time())

! Do not forget to call the destructor at the end (close the file)

call ps % destroy()

6 Short instructions

Here are brief lists, which you should not forget about while reconfiguring the model.

6.1 Configuration switch

— Number of ice cores is specified in ice_in and comp_ice

— Ice timestep is specified in ice_in and ice_list.in

— Forcing data bases are chosen in atm_list.in and lnd_list.in

— The formula of freezing point in ice_module.f90 is desirable to be the same as in the used thermo-
dynamics scheme of CICE (by default – mushy).

— After each reconfiguring, affecting the CICE settings, completely rebuild the coupled model.

— If the reduced ice grid is used then in ice_list.in and config ther must be specified the reduced j-size
of the domain.

— Ocean-ice coupling frequency is specified in two places: in o_tf_module.f90 and ice_cice_driver_module.f90.

6.2 Deep reconfiguring of the forcing under CMF2.0

— Forcing in all components (atmosphere, land, ...) should start with the same date.

— The start date in run_list.in must coincide with the start date of the forcing database.

— Check the tuning of time_start_min

— Check the in situ – potential temperature conversion

— Check the sea level initialization

— Check whether the SST relaxation is on or off

31

— When registering reads from files (ACTION_READ_FD) within each component, all reading periods must
be a multiple of the minimum of the reading periods of this component. In particular, because of this,
either the periods of reading the average monthly values (runoff, rain, etc.) have to be 30.5 or even
30 days instead of 1440 * 365/12 minutes, or you need to enter an additional probe value, read with a
period of 2 hours .

7 Elements of numerical and program implementation

7.1 Notes on the differences between CMF2.0 and CMF3.0

In both versions of the system, the step counters time_l and time_l_in_run are initialized by value of 1 at
the start from the initial conditions file and incremented outside the o_ driver_module. They represent the
step number that is being taken now (that is, for the ocean, they mean how many steps will be taken when
the current step of the physical model is completed). The difference is that for CMF2.0 the whole calendar
is calculated basing on these counters and, accordingly, time_min, time_hour, ... is the moment of the end
of the current model step. In CMF3.0, these variables (time_min, time_hour, ...) are not directly calculated
by the coupler and made as an additive, for compatibility with CMF2.0. And they do not correspond to the
end, but to the beginning of the current step.

A Appendix: basic namelist parameters

Table 1: INMIO namelist parameters

File Variable Values Comments

atm_list.in atm_forcing_type 1 “normal” year cycle CNYFv2 (CORE-I)
2 “real” IAFv2 data for 1948-2009 (CORE-II)

lnd_list.in atm_rivers_type 1 “normal” year cycle CNYFv2 (CORE-I)
2 “real” IAFv2 data for 1948-2009 (CORE-II)

Table 2: CICE namelist parameters

File Variable Values Comments

ice_in calc_Tsfc T calculate surface heat fluxes and temperature
F do not calculate, get from coupler (requires ktherm = 0)

ice_in calc_strair T calculate surface wind stress
F do not calculate, get from coupler

B Appendix: standard configurations

laptev0125c

Test configuration for PC. Computational domain of the size 40 × 60 in the region of the Laptev Sea with
the added artificial ring island. The grid is latitude-longitudinal, the resolution is about 0.125∘. The ice grid
is full. Forcing CNYFv2. The turbulence coefficients are small, close to the global eddy-resolving settings.

arctic025t

Arctic starting from 50∘ N with 0.25∘ resolution. Computational domain of 1440 × 160, three-polar grid.
The ice grid is full. Forcing CNYFv2. Viscosity is only biharmonic, diffusion is 300, of the NEMO type.

32

Implicit Coriolis approximation.

33

	Introduction
	Some features of this release

	User workplace preparation
	Installing the operating system and compiler
	SSH configuring
	Installing geophysical software
	Downloading the model and the geophysical data

	How to choose the model configuration and start working
	Compiling and running under CMF2.0
	Compiling and running under CMF3.0

	Basic options
	Launching on various numbers of tasks
	Selecting atmospheric and runoff forcing
	INMIO built-in ice model
	Working on reduced ice grid (available under CMF2.0 only)
	Working in offline analysis mode (available under CMF2.0 only)

	Compact Modelling Framework CMF3.0
	Getting started with the CMF3.0
	Model components
	Events in the system
	Services
	Working with NetCDF-files
	GA-communicator
	Additional tools for the model

	Short instructions
	Configuration switch
	Deep reconfiguring of the forcing under CMF2.0

	Elements of numerical and program implementation
	Notes on the differences between CMF2.0 and CMF3.0

	Appendix: basic namelist parameters
	Appendix: standard configurations

